Monte Carlo Simulations of Spin Transport in a Strained Nanoscale InGaAs Field Effect Transistor
نویسندگان
چکیده
Spin-based logic devices could operate at very high speed with very low energy consumption and hold significant promise for quantum information processing and metrology. Here, an in-house developed, experimentally verified, ensemble self-consistent Monte Carlo device simulator with a Bloch equation model using a spin-orbit interaction Hamiltonian accounting for Dresselhaus and Rashba couplings is developed and applied to a spin field effect transistor (spinFET) operating under externally applied voltages on a gate and a drain. In particular, we simulate electron spin transport in a 25 nm gate length In0.7Ga0.3As metal-oxide-semiconductor field-effect transistor (MOSFET) with a CMOS compatible architecture. We observe non-uniform decay of the net magnetization between the source and gate and a magnetization recovery effect due to spin refocusing induced by a high electric field between the gate and drain. We demonstrate coherent control of the polarization vector of the drain current via the source-drain and gate voltages, and show that the magnetization of the drain current is strain-sensitive and can be increased twofold by strain induced into the channel.
منابع مشابه
Simulation study of the performance of a biologically sensitive field effect transistor
The transformation of biochemical information into a physical or chemical signal is the basic idea behind a biosensor. The efficient detection of charged biomolecules by biosensor with appropriate device has caught tremendous research interest in the present decade. The present work is related to the simulation study of the performance of a functionalized surface of a biologically sensitive fie...
متن کاملStrained-Si single-gate versus unstrained-Si double-gate MOSFETs
Self-consistent full-band Monte Carlo simulations are employed to compare the performance of nanoscale strained-Si single-gate (SG) and unstrained-Si double-gate (DG) MOSFETs for a gate length of 25 nm. Almost the same on-current as in the DG-MOSFET can be achieved by strain in a SG-MOSFET for the same gate overdrive. This is due to the compensation of the higher electron sheet density in the t...
متن کاملRashba effect in strained InGaAs/InP quantum wire structures
We investigated the effect of the Rashba spin–orbit coupling in two-dimensional electron gases and quasi one-dimensional wire structures based on a strained InGaAs/InP heterostructure. For the two-dimensional electron gas structure it is demonstrated that the Rashba effect can be controlled by using a gate electrode. By a detailed discussion it is shown that our heterostructure can be employed ...
متن کاملRepresentation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics
In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-...
متن کاملSimulation study of the performance of a biologically sensitive field effect transistor
The transformation of biochemical information into a physical or chemical signal is the basic idea behind a biosensor. The efficient detection of charged biomolecules by biosensor with appropriate device has caught tremendous research interest in the present decade. The present work is related to the simulation study of the performance of a functionalized surface of a biologically sensitive fie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017